Kritikus micellaképződési koncentráció meghatározása NMR spektroszkópia segítségével

Nagyműszeres gyakorlat, 700 MHz NMR spektrométer, -1.108 labor Gyakorlatvezető: Dr. Bodor Andrea abodor@caesar.elte.hu

Ajánlott irodalom

Joseph P. Hornak, Ph.D.

Copyright © 1997-2019 J.P. Hornak. All Rights Reserved.

https://www.cis.rit.edu/htbooks/nmr/inside.htm

Buday, Nyitray, Perczel: Ezerarcú fehérjék, 2018 NMR spektroszkópia: 7. Fejezet

https://www.semmelweiskiado.hu/termek/1463/ezerarcu-feherjek

Jelmagyarázat

<u>/!</u>

Az ilyen szövegdobozok fontos megjegyzéseket tartalmaznak

A PowerPoint bemutatóban kérdések hangoznak el, melyekre a jegyzőkönyvben válaszolni kell. Ezeket kék betűvel jelöltük.

A gyakorlat célja

A gyakorlat során egy anionos felületaktív anyag, a nátrium-lauril-szulfát (sodium dodecyl sulphate, SDS) kritikus micellaképződési koncentrációját (cmc) határozzuk meg transzlációs diffúziós NMR mérésekkel.

Az SDS molekulában milyen NMR aktív magok találhatók? Jellemezzük őket! Mennyire könnyű ezeket mérni? A cmc meghatározáshoz mely magok mérése lehet alkalmas?

kritikus micellaképződési koncentráció (CMC)

A micellaképződés megindulásához szükséges minimális koncentráció, vagyis amfifil molekulák azon koncentrációja, mely felett az amfifil molekulák asszociációja során termodinamikailag stabilis micellák képződnek.

Soroljon fel néhány micellaképző vegyületet. Milyen alkalmazásait tudná megnevezni?

Membránmimetikumok

+vezikulák stb.

Hagn, F.; Etzkorn, M.; Raschle, T.; Wagner, G. J Am Chem Soc 2013, 135, 1919–1925.

cmc meghatározási módszerek

Tárgyaljuk a különböző módszerek előnyeit és hátrányait!

Mai gyakorlaton: cmc meghatározás diffúziós együtthatóból. Diffúziós együttható meghatározása NMR méréssel.

Stokes-Einstein egyenlet

$$D = \frac{kT}{6\pi\eta r_{\rm H}}$$

- D diffúziós együttható
- k Boltzmann-állandó (1,38·10⁻²³ J/K)
- T hőmérséklet
- η közeg viszkozitása
- $r_{\rm H}$ a diffundáló részecske hidrodinamikai sugara

A diffúziós együttható fordítottan arányos a részecske oldatbeli méretével.

A mért diffúziós együttható a szabad és a micellában kötött tenzid diffúziós együtthatójának moltörtekkel súlyozott átlaga:

 $D_{mért} = x_{szabad} D_{szabad} + x_{mic} D_{mic}$

Hogy változik a diffúziós együttható a tenzid összkoncentráció növelésével?

DOSY mérések

A diffúziós együttható meghatározása Stejskal-Tanner egyenlet alapján

Az intenzitás (*I*) a gradienserősség (*G*) függvényében *Gauss-görbe* szerint csökken, ezt fejezi ki a Stejskal-Tanner egyenlet:

A mérés során beállítandó: *δ*, *Δ* Egy kísérleten belül változtatjuk: gradienserősség A nemlineáris illesztésből megkapjuk a **diffúziós együtthatót**.

A gyakorlat menete

- 1. Mintaelőkészítés
- 2. NMR mérések
 - 1. Lock
 - 2. Atma proton
 - 3. Shim
 - 4. 1D ¹H spektrum felvétele
 - 5. DOSY mérés
- 3. Kiértékelés:
 - 1. Stejskal-Tanner egyenlet illesztése
 - 2. EDDOSY

Mintaelőkészítés

Rendelkezésre álló vegyszerek:

- 0.1 M SDS törzsoldat
- Desztillált víz

 $- D_2O$

Készítsen 5 különböző hígítású SDS oldatot az alábbi koncentrációkban. A minták végtérfogata 600 μ l legyen és minden minta tartalmazzon 10 % D₂O-t. Számítsa ki, mennyit kell bemérni az egyes anyagokból!

c _{sps} / mM	V _{SDS} / μl	V _{H2O} / μΙ	V _{D2O} / μΙ
3			
6			
9			
12			
15			

NMR mérések

A mérések kiértékeléséhez használt program:

TopSpin 3.6.2

Ingyenesen letölthető: <u>https://www.bruker.com/service/support-upgrades/software-</u> <u>downloads/nmr/free-topspin-processing/nmr-topspin-license-for-</u> <u>academia.html</u>

Fontos hogy a **3.6-os verziót** töltsék le, ne legújabbat, a 4-est!!! A Setup type választásnál a "Data processing only"-t válasszák.

TopSpin 3.6.2

Bevezető a TopSpin használatához:

https://www.youtube.com/watch?v=FocoABJ2rvw

[•] Ide lehet beírni a parancsokat

Mérési mappa hozzáadása: jobb klikk a Spektrum file ablakban → Add new data dir. Spektrum megnyitása: egérrel (nyomva tartott bal billentyűvel) áthúzni a mappát a spektrum ablakhoz (drag-and-drop)

A virtuális laborgyakorlaton végigvesszük az 1D ¹H és diffúziós NMR mérések lépéseit (16-20 és 24-28 dia).

A gyakorlat segédanyaga részletes leírást tartalmaz a spektrumok értékeléséről (22-23 és 30-44. dia), ezeket a hallgatóknak otthon el kell végezniük a mellékelten küldött adatfájlokon.

Mérés menete I. – új mérés

edc: új mérési mappa létrehozása korábbi mérés paramétereinek lemásolásával

Create New Dataset - new Prepare for a new experiment by creating a new data s initializing its NMR parameters according to the selecter For multi-receiver experiments several datasets are cri Please define the number of receivers in the Options.	Set and ed experiment type. reated.		/ Mappa neve: Gyakorlat_Pr_[ÉÉHHNN]
NAME	Gyakoriat_Pr_190923)	
EXPNO	12	ľ	
PROCNO ● Use current parameters ○ Experiment ◇ Options □ Set solvent ○ Execute 'getprosol' ○ Keep parameters DIR □ Show new dataset in new window Number of additional datasets: (1,2,16)	1 Select H2O+D2O P 1, O1, PLW 1 Change C:\Egyetem\ELTE\PhD\Oktatas\Nagymuszeres_DOSY 1		 Az alábbi méréseket kell létrehozni: zgpr: 1D ¹H spektrum vízelnyomással, csak O1 és p1 beállítására használjuk (1 db) zgesgp: 1D ¹H spektrum jobb vízelnyomással (mintánként 1 db) stebpgp1s19: DOSY mérés vízelnyomással (mintánként 1 db)
TITLE	M SDS OK Cancel More Info Help	□ 	— Mérés címe: minta adatai

Mérés menete II. - előkészületek

- lock: a mágneses tér időbeli változásait kompenzálja az oldószer deutériumjelének folyamatos monitorozásával → deuterált oldószert meg kell adni
- 2. atma proton: A proton rezonanciafrekvenciájára hangolja az RF tekercset
- shim: mágneses tér térbeli homogenitását biztosítja → shim-tekercsekkel kompenzáljuk a 14.6 T mágneses tér inhomogenitásait (procedúra: Z, Z², Z, Z²... továbbá Z³, X, Y)

1. lock

2. Megfelelő hangolás

3. Shim

Mérés menete III. – p1 és o1

- *zg*: mérés indítása ← indítsuk el a létrehozott **zgpr** mérést
- *pulsecal*: a proton mágnesezettség 90 °-os kibillentéséhez szükséges kemény pulzus hosszát (*p1*) számítja ki μs-ban

• *o1*: A spektrum közepét adja meg Hz-ben. Értékét a vízjel maximumára kell beállítani, hogy hatékony legyen a vízelnyomás.

Jól beállított o1 - hatékony vízelnyomás: A maradék vízjel kicsi, az alakja torz

Mérés menete IV. – 1D ¹H spektrum

- zgesgp mérés létrehozása
- getprosol 1H [p1] -12.55:
 - [p1] helyére a pulsecal paranccsal meghatározott érték kerül
 - <u>beállítja p1-et</u> (és kiszámolja p1 alapján a formázott pulzusok teljesítményét)
- 01 zgpr-ből meghatározott o1-et beírjuk
- *zg* mérés indítása → mit kapunk?
- *efp* Exponenciális simítófüggvény + <u>Fourier-transzformáció</u> + automata fáziskorrekció → mit kapunk meg ezzel a paranccsal?

Vízelnyomás jelentősége

A következő diákon (22-23.) szereplő feladatokat el kell végezni, az eredményeket a jegyzőkönyvben fel kell tüntetni!

Jelcsoportok integrálása: / Process \rightarrow \rightarrow Integrate \rightarrow A spektrum ablak menüje átvált integrálás menüre. Manuális integrálás kiválasztása: μ majd a jelek integrálása kattintással és az egér húzásával. A relatív integrál értékek pirossal jelennek meg. Milyen információt hordoz az integrál?

A jegyzőkönyvben szerepeljen az asszignáció:

Jelcsoport száma (lásd előző dia)	Kémiai eltolódás (jegyzőkönyvbe pontos értékeket!)	Asszignáció	Multiplicitás	Integrál
	~4,8 ppm	H ₂ O	-	-
1.	~3,9 ppm			
2.	~1,6 ppm			
3.	~1,3 ppm			
4.	~1,2 ppm			
5.	~0,8 ppm			

Diffúziós mérések paraméterei

A mérés során beállítandó:

P1, O1, SW stb. <u>DOSY paraméterek</u>: δ , Δ , gradienserősséget hány pontban, milyen függvény szerint változtatjuk

δ beállítása:

parancs: P30: itt a δ értékének a felét kell megadni µs-ban!

⊿ beállítása:

parancs: D20: itt a *A* értékét kell megadni s-ban!

Gradienserősség változtatása: Lásd "DOSY mérés indítása" dia Figyeljen a mértékegységekre!
 A paraméterek megadásánál
 δ fele μs-ban, Δ s-ban van!
 A végső DOSY kiértékelésnél
 δ és Δ értékeit ms-ban kell megadni!

Mérési paraméterek

- Ajánlott értékek δ hoz és Δ hoz :
 - Kisebb molekuláknál: $\delta = 2 \text{ ms}, \Delta = 75, 100 \text{ ms}$

P30 = 1000, D20 = 0.75, 0.1

- Nagyobb molekuláknál (10 kDa <): $\delta = 4$, $\Delta = 200$ ms

P30 = 2000, D20=0.2

SDS-hez: $\delta = 2 \text{ ms}$, $\Delta = 150 \text{ ms}$

DOSY mérés indítása

Bruker TopSpin 3.6.2 on FANNI-PC as FANNI [Academic License]	h <u>V</u> iew	<u>M</u> anage	0			_	
С <u>г</u> еаte Data С <u>г</u> еаte Data (С <u>г</u> еаte Data) (С <u>г</u> еаte Data) (С <u>г</u> еаte Data) (С <u>г</u> еаte Data) (С <u>г</u> еаte Data)	aset [Dataset	Open Datas	et Pas <u>t</u> e I	Dataset 🛃 R <u>e</u> ad Par	s.	
Browser Last50 Groups	1 Gyakorlat	Pr_190923 2 1	C:\Users\FANNI\Docun	ents\NMR\spektrum			
C:\Bruker\TopSpin3.5pl7\examdata	Spectrum	ProcPars A	cquPars Title Pul	eProg Peaks Int	tegrals Sample Structure	Plot Fid	
P Spektrumok	298K, SE	98 3mM				·····	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
							- 2
							- 9
							-
							-
Structure			8				c c c c c c c c c c c c c c c c c c c
		4	~				
\setminus				, ,			
· dosy pa	ara	nc	s bo	eirá	sa id	e	

Majd egy párbeszédablak jelenik meg, ahol a gradienserősség változtatásának beállításait adjuk meg

Itt ENTER-t kell ütni

Paraméterek beállítása

1. A gradienserősség első értéke, a maximális gradienserősség %-ában

🖕 dosy	
Enter first gradient amplitude	c
2	
	OK Cancel

2. Végső gradienserősség

🍓 dosy	×
Enter final gradient amplitude:	
98	
	OK Cancel

 a gradienserősséget hány lépésben növeli

4. Milyen függvény szerint változtatjuk a gradienserősséget

Itt a gyakorlaton 5 és 95% között, 8 lépésben lineárisan változtattuk.

Egy DOSY mérés 8 FID-je

8 elemes mérés, 8 FID látható egymás után, egyre csökkenő intenzitással

A következő diákon (30-44.) szereplő feladatokat el kell végezni, az eredményeket a jegyzőkönyvben fel kell tüntetni!

Diffúziós mérések kiértékelése

Pszeudo-2D adatsor Fourier-transzformációja xf2 paranccsal

2D ábrázolás

³D ábrázolás

Tanner-egyenlet illesztése

T1/T2 menüsoron <u>Fid</u> ikonra kattintunk: megjelenik egy párbeszédablak

Extract a row from 2d data	×			
Fid or Spectrum must be extracted From the 2d relaxation data. This row should correspond to an experiment with the maximum or minimum delay time. All further data preparation will be done in respect to this row.				
FID Spectrum C	ancel			
é	×			
Spectrum slice must be extracted From the 2d relaxation data. This Spectrum should correspond to an experiment with the maximum or minimum of	lelay time.			
All further data preparation will be done in respect to this spectrum.				
Slice Number = 1				
ОК	Cancel			

Párbeszédablakon kiválasztjuk "Spectrum"-ot: ezzel kiemelhetünk egy 1D ¹H spektrumot a DOSY méréssorozatából

Válasszuk ki az 1. spektrumot (legkisebb gradienserősséggel felvett): 1 Utána OK

Megjelenik a megfelelő 1D ¹H spektrum. Nagyítsuk ki az SDS jeleit tartalmazó régiót.

A A Peaks/Ranges menüpontra kattintunk, majd a párbeszédablakon kiválasztjuk a "Manual integration"-t (a következő párbeszédablak ["Prepare relaxation data"] OK).

Válaszd ki az integrálás ikont (balról a második). Kiválasztás után kézzel kijelöljük az integrálási tartományokat (kattintás, majd egér húzása a spektrumon). Az integrálértékek pirossal jelennek

meg.

Mentés másként: úgy kell elmentenünk, hogy ezek az integrálási tartományok minde spektrumra vonatkozzanak a pszeudo2Dadatsorban

A 🔄 Relaxation ikonra kattintva új ablak nyílik meg. A figyelmeztetést (vdlist fájlt nem találja) bezárjuk, majd megjelenik egy újabb ablak, ahol a DOSY mérés paramétereit állíthatjuk be.

Az első 9 pont a felvett spektrumok integrálásának módját határozzák meg: Mi mind a 8 spektrumot integrálni szeretnénk, az elsőtől kezdve, egy lépésenként haladva.

A következő 5 pont határozza meg, milyen függvényt illesztünk a kiszámított csúcsintenzitásokra/területekre. Mivel a gradienserősséget módosítottuk az előre definiált diffúziós lista szerint, így ezeket kell beállítani (ezzel egyúttal azt is megadjuk, hogy a Stejskal-Tanner-egyenletet kell illesztenie).

Az utolsó 4 pont a Tanner-egyenletben használt mérési paramétereket adjuk meg. Ezek a GAMMA (készülékállandó), kis delta és nagy delta. Az utolsó a gradienserősség, ez inaktív, mivel ez a független változó.

Diff.: Var. Gradient I[t]=I[0]exp(-D*SQR(2*PI*gamma*G*LD)*(BD-LD... X Guess I0 1.0 0.1 Step I0 1.0E-9 Guess D m2/s Step D 1.0E-10 m2/s OK Apply Cancel

Az illesztéshez szükség van kezdeti paraméterek megadására, ezek szerepelnek ebben az ablakban. Ezeket fogadjuk el (OK).

Stejskal-Tanner egyenlet illesztéséhez szükséges paraméterek:

- GAMMA (γ): 5173 (készülékállandó)
- LITDEL: kis delta, δ ms-ban megadva
- BIGDEL: nagy delta, Δ ms-ban megadva

Diffúziós mérések kiértékelése I.

Az előbbi műveletsort (30-36.dia) elvégezzük a különböző koncentrációjú SDS oldatok DOSY mérésein (a pszeudo2D DOSY adatfájlokat kékkel, az 1D ¹H spektrumokat feketével jelöli a TopSpin a spektrum fájlok között). Az egyes SDS koncentrációkhoz kapott diffúziós együtthatókat az alább látható grafikonon ábrázoljuk. A két illesztett egyenes metszéspontja adja meg a cmc-t.

Figyelje meg hogyan változnak a jelek az 1D¹H spektrumokon! (kémiai eltolódás) Az SDS melyik protonjain jelentős a változás? Magyarázza a megfigyeléseit! (Az 1D¹H spektrumokat a 🕅 ikonnal lehet egymásra rakni.)

Diffúziós mérések kiértékelése II. *eddosy* kiértékelés

A kiértékelés eredménye egy 2D spektrumra emlékeztető NMR "kromatogram", ahol a függőleges tengelyen a diffúziós együttható logaritmusa (Log*D*), a vízszintes tengelyen az 1D ¹H spektrum szerepel. Többkomponensű rendszer esetén az egyes molekulák vízszintes sávokként jelennek meg a nekik megfelelő log*D*-nél. Az alábbi ábra bemutatja, hogy lehet ez alapján komponenseket elkülöníteni egy keverékben.

eddosy kiértékelés

Menete:

- 1. Behívjuk a DOSY spektrumot (bezárunk minden más TopSpinen belül megnyitott ablakot)
- 2. xf2 parancs (ezzel Fourier-transzformáljuk az összes spektrumot az adatkészletben)
- 3. eddosy parancs

Következő párbeszéd ablak jelenik meg, OK-ra kell kattintani

eddosy kiértékelés 2.

A következő ablak jelenik meg:

1 Gyakorlat_Pr_190923 3 1 C:\Users\FANNI\Documents\NMR\spektrum						
Spectrum P	rocPars AcquPars T	itle PulseProg Peaks	Integrals Sample Structure Plot Fid			
PG ^L	, I, <mark>)→</mark> [''' ▼ Ø	8				
General First	General			Â		
Second	Method	exponential -	Processing method	=		
Third	ExpVar	Gradient -	Variable parameter			
Contin	Xlist	difflist	Variable parameter values file name			
Contain	Nstart	0	Start of input points			
	Ndata	8	Number of input points (TD)			
	Maxiter	100	Maximum number of iterations			
	EPS	1	Tolerance			
	Nexp	1	Number of components to fit			
	Noise	24351.00	Noise level (S_DEV)			
	PC	4	Noise sensitivity factor			
	SpiSup	1	Spike suppression factor			
	F1mode	Peaks -	F1 output data mode			
	Imode	Integral 👻	Fitted intensity meaning			
	Scale	Linear -	Scaling			
	LWF	1	Line width factor	Ŧ		

eddosy kiértékelés 3.

A következőt kell átállítani:

1 Gyakorlat_Pr_	1 Gyakorlat_Pr_190923 3 1 C:\Users\FANNI\Documents\NMR\spektrum						
Spectrum P	rocPars AcquPars Ti	tle PulseProg Peaks	Integrals Sample Structure Plot Fid				
PG	」 ユ゙ ┝┷ 🛄 🔍 🚜	}					
General First	General			Â			
Second	Method	exponential -	Processing method	=			
Third	ExpVar	Gradient -	Variable parameter				
Baseline	Xlist	difflist	Variable parameter values file name				
Contin	Nstart	0	Start of input points				
	Ndata	8	Number of input points (TD)				
	Maxiter	100	Maximum number of iterations				
	EPS	1	Tolerance				
	Nexp	1	Number of components to fit				
	Noise	24351.00	Noise level (S_DEV)				
	PC	4	Noise sensitivity factor				
	SpiSup	1	Spike suppression factor				
	F1mode	Peaks -	F1 output data mode				
	Imode	Integral 🔹	Fitted intensity meaning				
	Scale	Linear 🔹	Scaling				
	LWF	1	Line width factor	+			

Scale legyen a Linear helyett Logarithmic!

eddosy kiértékelés 4.

A következőt kell átállítani:

GAMMA: 5173 Hz/G

eddosy kiértékelés 5.

Ha mindent beállítottunk, akkor először az 1 gombra kattintunk – elvégzi a számításokat. Utána átlépünk a Spektrumra (2), ahol az "NMR kromatogramot" fogjuk látni.

ĺ	3 Gyakorlat_Pr	190923 3 1 C:\Users\FANN	II\Documents\NMR\spektrur	n	- • •
	Spectrum P	rocPars AcquPars Ti	tle PulseProg Peaks	Integrals Sample Structure Plot Fid	
	🗠 P G 🗓	<u>I ++ </u> - #			
1	General	SpiSup	1	Spike suppression factor	*
. /	First	F1mode	Peaks 🔹	F1 output data mode	
	Second	Imode	Integral -	Fitted intensity meaning	
	Third	Scale	Logarithmic -	Scaling	
	Baseline	LWF	1	Line width factor	
	Contin	DISPmin	-10	Lower display limit	=
2		DISPmax	-8	Upper display limit	
		Npars	7	Number of parameters	
		Nvar	2	Number of parameters to fit	
		Gamma [Hz/G]	5173.00000	Gamma	
		Grad [G/cm]	0	Diffusion gradient	
		Gdist [ms]	150.00000	Gradient distance, big delta	
		Glen [ms]	2.00000	Gradient length, little delta	
		Sirst componen	t		
		l1vary	Yes 🔹	Fit intensity?	
		11	100000000	Intensity	
			0117100017	And the second	

eddosy kiértékelés 6.

Nagyítsunk rá az SDS jeleire és olvassuk le a log*D* értéket a kurzor csúcs közepére való mozgatásával. A bal felső sarokban leolvashatjuk a kurzor pontos pozícióját az y tengelyen ("row").

Jegyzőkönyvben szerepeljen:

- mérést végző hallgatók neve, a mérés dátuma
- ♦ a mérés címe, célja
- rövid elméleti háttér (SDS, micella, cmc és meghatározása, DOSY, Stejskal-Tanneregyenlet)
- mérés menete
- felhasznált törzsoldatok, bemérés
- diffúzió paraméterei (δ,Δ,γ, p1, o1)
- eddosy 2D lg D
- 1D spektrumok az egyes koncentrációk esetén
- diffúzió illesztett görbe
- eredmények táblázatban minden jelre (c, kémiai eltolódás (ppm), D, átlag, szórás), 1D (külön intenzitás és integrál értékekre), 2D kiértékelésből
- koncentráció-diffúziós együttható görbék, az illesztett egyenesek egyenletei, számolt cmc
- összevetés irodalmi adatokkal, forrás
- hibák eredete, az eltérések magyarázata
- a gyakorlati anyagot tartalmazó PowerPoint bemutatóban elhangzó kérdésekre a válasz

Jegyzőkönyv beadása: 1 héten belül Emailben: abodor@caesar.elte.hu